Mathematical modeling of calcium signaling during sperm hyperactivation.
نویسندگان
چکیده
Mammalian sperm must hyperactivate in order to fertilize oocytes. Hyperactivation is characterized by highly asymmetrical flagellar bending. It serves to move sperm out of the oviductal reservoir and to penetrate viscoelastic fluids, such as the cumulus matrix. It is absolutely required for sperm penetration of the oocyte zona pellucida. In order for sperm to hyperactivate, cytoplasmic Ca(2+) levels in the flagellum must increase. The major mechanism for providing Ca(2+) to the flagellum, at least in mice, are CatSper channels in the plasma membrane of the principal piece of the flagellum, because sperm from CatSper null males are unable to hyperactivate. There is some evidence for the existence of other types of Ca(2+) channels in sperm, but their roles in hyperactivation have not been clearly established. Another Ca(2+) source for hyperactivation is the store in the redundant nuclear envelope of sperm. To stabilize levels of cytoplasmic Ca(2+), sperm contain Ca(2+) ATPase and exchangers. The interactions between channels, Ca(2+) ATPases, and exchangers are poorly understood; however, mathematical modeling can help to elucidate how they work together to produce the patterns of changes in Ca(2+) levels that have been observed in sperm. Mathematical models can reveal interesting and unexpected relationships, suggesting experiments to be performed in the laboratory. Mathematical analysis of Ca(2+) dynamics has been used to develop a model for Ca(2+) clearance and for CatSper-mediated Ca(2+) dynamics. Models may also be used to understand how Ca(2+) patterns produce flagellar bending patterns of sperm in fluids of low and high viscosity and elasticity.
منابع مشابه
Mathematical Modeling of Calcium Signaling in Sperm Mathematical modeling of calcium signaling during sperm hyperactivation
Mammalian sperm must hyperactivate in order to fertilize oocytes. Hyperactivation is characterized by highly asymmetrical flagellar bending. It serves to move sperm out of the oviductal reservoir and to penetrate viscoelastic fluids, such as the cumulus matrix. It is absolutely required for sperm penetration of the oocyte zona pellucida. In order for sperm to hyperactivate, cytoplasmic Ca level...
متن کاملRoles of Intracellular Cyclic AMP Signal Transduction in the Capacitation and Subsequent Hyperactivation of Mouse and Boar Spermatozoa
It is not until accomplishment of a variety of molecular changes during the transit through the female reproductive tract that mammalian spermatozoa are capable of exhibiting highly activated motility with asymmetric whiplash beating of the flagella (hyperactivation) and undergoing acrosomal exocytosis in the head (acrosome reaction). These molecular changes of the spermatozoa are collectively ...
متن کاملChanges in Motility Parameters of Mouse Spermatozoa in Response to Different Doses of Progesterone during Course of Hyperactivation
The aim of this study was to evaluate changes that occur in motility parameters of progesterone treated mouse spermatozoa during course of hyperactivation. Mouse spermatozoa treated with different doses of progesterone were videotaped after 10 min and 90 min of incubation. For each sperm, one second of movement of the head-midpiece junction was traced from the videotape and for each tracing sev...
متن کاملControl of hyperactivation in sperm.
BACKGROUND Sperm hyperactivation is critical to fertilization, because it is required for penetration of the zona pellucida. Hyperactivation may also facilitate release of sperm from the oviductal storage reservoir and may propel sperm through mucus in the oviductal lumen and the matrix of the cumulus oophorus. Hyperactivation is characterized by high amplitude, asymmetrical flagellar bending. ...
متن کاملSwimming with sperm
putative calcium channel specific to sperm tails may be the best target yet for a male contraceptive. The protein, dubbed CatSper, was discovered in a homology search by David Clapham and colleagues of Harvard Medical School, Boston, MA. CatSper looks like a calcium channel, although Clapham could not detect a calcium current in transfected cells, probably because another component of the chann...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular human reproduction
دوره 17 8 شماره
صفحات -
تاریخ انتشار 2011